Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Iron-sulfur cluster signaling: The common thread in fungal iron regulation.

Identifieur interne : 000053 ( Main/Exploration ); précédent : 000052; suivant : 000054

Iron-sulfur cluster signaling: The common thread in fungal iron regulation.

Auteurs : Malini Gupta [États-Unis] ; Caryn E. Outten [États-Unis]

Source :

RBID : pubmed:32234663

Abstract

Iron homeostasis in fungi involves balancing iron uptake and storage with iron utilization to achieve adequate, nontoxic levels of this essential nutrient. Extensive work in the nonpathogenic yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe has uncovered unique iron regulation networks for each organism that control iron metabolism via distinct molecular mechanisms. However, common themes have emerged from these studies. The activities of all fungal iron-sensing transcription factors characterized to date are regulated via iron-sulfur cluster signaling. Furthermore, glutaredoxins often play a key role in relaying the intracellular iron status to these DNA-binding proteins. Recent work with fungal pathogens, including Candida and Aspergillus species and Cryptococcus neoformans, has revealed novel iron regulation mechanisms, yet similar roles for iron-sulfur clusters and glutaredoxins in iron signaling have been confirmed. This review will focus on these recent discoveries regarding iron regulation pathways in both pathogenic and nonpathogenic fungi.

DOI: 10.1016/j.cbpa.2020.02.008
PubMed: 32234663
PubMed Central: PMC7237280


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Iron-sulfur cluster signaling: The common thread in fungal iron regulation.</title>
<author>
<name sortKey="Gupta, Malini" sort="Gupta, Malini" uniqKey="Gupta M" first="Malini" last="Gupta">Malini Gupta</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA 29208.</nlm:affiliation>
<orgName type="university">Université de Caroline du Sud</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA 29208. Electronic address: outten@sc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32234663</idno>
<idno type="pmid">32234663</idno>
<idno type="doi">10.1016/j.cbpa.2020.02.008</idno>
<idno type="pmc">PMC7237280</idno>
<idno type="wicri:Area/Main/Corpus">000067</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000067</idno>
<idno type="wicri:Area/Main/Curation">000067</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000067</idno>
<idno type="wicri:Area/Main/Exploration">000067</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Iron-sulfur cluster signaling: The common thread in fungal iron regulation.</title>
<author>
<name sortKey="Gupta, Malini" sort="Gupta, Malini" uniqKey="Gupta M" first="Malini" last="Gupta">Malini Gupta</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA 29208.</nlm:affiliation>
<orgName type="university">Université de Caroline du Sud</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA 29208. Electronic address: outten@sc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current opinion in chemical biology</title>
<idno type="eISSN">1879-0402</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron homeostasis in fungi involves balancing iron uptake and storage with iron utilization to achieve adequate, nontoxic levels of this essential nutrient. Extensive work in the nonpathogenic yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe has uncovered unique iron regulation networks for each organism that control iron metabolism via distinct molecular mechanisms. However, common themes have emerged from these studies. The activities of all fungal iron-sensing transcription factors characterized to date are regulated via iron-sulfur cluster signaling. Furthermore, glutaredoxins often play a key role in relaying the intracellular iron status to these DNA-binding proteins. Recent work with fungal pathogens, including Candida and Aspergillus species and Cryptococcus neoformans, has revealed novel iron regulation mechanisms, yet similar roles for iron-sulfur clusters and glutaredoxins in iron signaling have been confirmed. This review will focus on these recent discoveries regarding iron regulation pathways in both pathogenic and nonpathogenic fungi.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32234663</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0402</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>55</Volume>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Current opinion in chemical biology</Title>
<ISOAbbreviation>Curr Opin Chem Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Iron-sulfur cluster signaling: The common thread in fungal iron regulation.</ArticleTitle>
<Pagination>
<MedlinePgn>189-201</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1367-5931(20)30024-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cbpa.2020.02.008</ELocationID>
<Abstract>
<AbstractText>Iron homeostasis in fungi involves balancing iron uptake and storage with iron utilization to achieve adequate, nontoxic levels of this essential nutrient. Extensive work in the nonpathogenic yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe has uncovered unique iron regulation networks for each organism that control iron metabolism via distinct molecular mechanisms. However, common themes have emerged from these studies. The activities of all fungal iron-sensing transcription factors characterized to date are regulated via iron-sulfur cluster signaling. Furthermore, glutaredoxins often play a key role in relaying the intracellular iron status to these DNA-binding proteins. Recent work with fungal pathogens, including Candida and Aspergillus species and Cryptococcus neoformans, has revealed novel iron regulation mechanisms, yet similar roles for iron-sulfur clusters and glutaredoxins in iron signaling have been confirmed. This review will focus on these recent discoveries regarding iron regulation pathways in both pathogenic and nonpathogenic fungi.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gupta</LastName>
<ForeName>Malini</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA 29208.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Outten</LastName>
<ForeName>Caryn E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA 29208. Electronic address: outten@sc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R35 GM118164</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Curr Opin Chem Biol</MedlineTA>
<NlmUniqueID>9811312</NlmUniqueID>
<ISSNLinking>1367-5931</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Fungal pathogen</Keyword>
<Keyword MajorTopicYN="Y">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">Glutathione</Keyword>
<Keyword MajorTopicYN="Y">Iron homeostasis</Keyword>
<Keyword MajorTopicYN="Y">Iron–sulfur cluster</Keyword>
<Keyword MajorTopicYN="Y">Transcriptional regulation</Keyword>
</KeywordList>
<CoiStatement>Conflict of interest statement Nothing declared.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>04</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32234663</ArticleId>
<ArticleId IdType="pii">S1367-5931(20)30024-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.cbpa.2020.02.008</ArticleId>
<ArticleId IdType="pmc">PMC7237280</ArticleId>
<ArticleId IdType="mid">NIHMS1568300</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Metallomics. 2018 Nov 14;10(11):1687-1700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30395137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Dec 14;287(51):43042-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23115244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Sep 30;6(9):e1001124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20941352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2015 Nov;67(11):801-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26472434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Nov;4(12):e410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Dec 4;9(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30514787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 May 18;30(10):2044-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37434</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22616008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2019 Dec;52:7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31085406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Jul 17;10:1645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31379791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 2017 Apr;33(4):75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28315258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2014 Dec;22:111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25460804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Jul 09;10:1528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31354649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2018 Aug 1;3(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30068562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biochem Biophys. 2018 Sep;76(3):339-344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29761345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Oct;54(2):507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Nov 24;6(11):e1001209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 04;9(6):e98959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24897379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2014 Sep 03;13:120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25205197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 4;286(44):38488-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21917924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 May 09;7:645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Feb;28(4):1326-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2018 Jun 1;56(4):458-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29420779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2019 Sep;24(6):809-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31493153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Dec;32(24):4998-5008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 15;286(28):25154-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21592964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Jun;11(6):806-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 26;277(30):26944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Feb;10(2):207-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2019 Feb;65(1):139-145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30128746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2980-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17538022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2016 Sep 9;478(1):187-192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27444384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2019 Oct;165(10):1041-1060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31050635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Jan;1863(1):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29032057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(11):e1002956</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23133381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2014 Oct 1;463(1):103-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24987864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18914-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11877447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2017 Apr;85:44-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28163187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2016 Oct 18;7(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27795405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Jan;35(2):370-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Mar;7(3):493-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 May;10(5):629-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):708-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Dec 01;8:2388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29250054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Aug 18;10(2):118-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21843869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2019 Sep 16;15(9):e1008379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31525190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Mar 25;11(3):e1005106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25806539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Oct 12;287(42):35709-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jun 14;7(1):3531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Nov 16;9:2689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30505294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gene Regul Mech. 2017 May;1860(5):560-570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27939757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Oct 1;33(19):2261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25092765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2017 Aug 16;9(8):1096-1105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28725905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2017 Nov;12:1397-1412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29039220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Aug 22;6:31872</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27546548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jul 1;15(13):3377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670839</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
</region>
<settlement>
<li>Columbia (Caroline du Sud)</li>
</settlement>
<orgName>
<li>Université de Caroline du Sud</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Gupta, Malini" sort="Gupta, Malini" uniqKey="Gupta M" first="Malini" last="Gupta">Malini Gupta</name>
</region>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000053 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000053 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32234663
   |texte=   Iron-sulfur cluster signaling: The common thread in fungal iron regulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32234663" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020